A Mixed Integer Programming Approach for Verifying Properties of Binarized Neural Networks AISAFETY 2021 - IJCAI-21

Christopher Lazarus 20 August 2021

Neural Network Verification

Neural Network Verification

Neural Network Verification

Car icon created by Alena Artemova from the Noun Project

Plane icon created by i cons from the Noun Project

Satellite icon created by Maxim Samos from the Noun Project

Testing Can Fail

Image credit: Changliu Liu, http://www.cs.cmu.edu/~cliu6/files/ NN-slides.pdf

Testing Can Fail

Verifying Neural Networks

 $(x\in \mathcal{X} \wedge y = NN(x)) \Rightarrow y\in \mathcal{Y}$

Challenges

Testing Pros: Scalable Cons: Not Sound

Formal Verification Pros: Sound

Cons: Not scalable

Binarized Neural Networks

[Figure: https://mohitjain.me/2018/07/14/bnn/]

Linear. $\hat{z}_i = Q_i z_{i-1}$ where $Q_i \in \{-1, 1\}^{k_{i+1} \times k_i}$ $\hat{z}_{i,j} = q_j^T z_{i-1}$ $j = 1, \dots, k_{i+1}$

ReLU. $z_i = \text{ReLU}(\hat{z}_i) = \max(0, \hat{z}_i)$ and given that $l \leq \hat{z}_i \leq u$ an can encode the block as:

 $egin{aligned} & z_i \leq \hat{z}_i - l(1-eta) \ & \hat{z}_i \leq z_i \ & z_i \leq eta \cdot u \ & 0 \leq z_i \ & eta \in \{0,1\} \end{aligned}$

Sign.
$$z_i = \operatorname{sign}(\hat{z}_i)$$

 $\hat{z}_i \ge 0 \implies z_i = 1$ $\hat{z}_i < 0 \implies z_i = 0$

but given bounds $l \leq z_i \leq u$, this can be formulated as

$$-1 \leq z_i$$

$$z_i \leq 1$$

$$\beta \leq \hat{z}_i$$

$$\hat{z}_i \leq u(1-\beta)$$

$$z_i = 1 - 2 \cdot \beta$$

$$\beta \in \{0, 1\}$$

Experiments

ACAS

MNIST

	ϵ	Time (s)			Accuracy (%)	
		Mean	Max	timeout	Verified	Data
BNN	0.1	0.223	3.21	0.00	88.24	95.6
DNN		5.47	28.12	0.05%	94.33	98.22
BNN	0.3	0.194	4.54	0.00	61.78	95.6
DNN		7.12	41.33	1.02%	80.68	98.22

		Loss	time (s)	result
full precision	BNN	2174.43	2.37	violated
	DNN	1203.44	41.44	holds
8 bit	BNN	1634.25	5.73	holds

Formal Verification is Key for Safety Critical Systems

